Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kenji Michiue, ${ }^{\text {a }}$ Ian Steele, ${ }^{\text {b }}$ Osvaldo L. Casagrande ${ }^{\text {c }}$ and Richard F. Jordan ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, USA, ${ }^{\mathbf{b}}$ Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois, USA, and ${ }^{\text {c }}$ Laboratory of Molecular Catalysis, Instituto de Química, UFRGS, Avenida Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil

Correspondence e-mail: rfjordan@uchicago.edu

Key indicators

Single-crystal X-ray study
$T=130 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
$w R$ factor $=0.120$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Trichloro[tris(3-mesitylpyrazol-1-yl)borohydrido]titanium dichloromethane disolvate

In the title complex, $\left[\mathrm{Ti}\left(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{BN}_{6}\right) \mathrm{Cl}_{3}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, the Ti atom is coordinated by three N atoms that are constrained to a facial arrangement by the $\mathrm{Tp}^{\mathrm{Ms}}$ ligand $\left[\mathrm{Tp}^{\mathrm{Ms}}=\mathrm{HB}(3\right.$-mesitylpyrazolyl $)_{3}$] and three chloride ligands in a distorted octahedral geometry. The complex molecules are located on crystallographic mirror planes.

Comment

Group 4 metal tris(pyrazolyl)borate complexes of general formula $\mathrm{Tp}^{\prime} M \mathrm{Cl}_{3}\left[\mathrm{Tp}^{\prime}=\right.$ generic tris(pyrazolyl)borate ligand; $M=\mathrm{Ti}, \mathrm{Zr}$, or Hf$]$ can be activated by methylalumoxane (MAO) to generate active catalysts for ethylene polymerization and ethylene/hexene copolymerization (Murtuza et al., 2002; Michiue \& Jordan, 2003; Michiue \& Jordan, 2004; Gil et al. 2004). The activity of $\mathrm{Tp}^{\prime} M \mathrm{Cl}_{3} / \mathrm{MAO}$ catalysts is strongly influenced by the steric properties of the Tp^{\prime} ligands, and catalysts that contain the sterically bulky $\mathrm{Tp}^{\mathrm{Ms}}$ and $\mathrm{Tp}^{\mathrm{Ms}{ }^{*}}$ ligands $\left[\mathrm{Tp}^{\mathrm{Ms}}=\mathrm{HB}(3 \text {-mesitylpyrazolyl })_{3} ; \mathrm{Tp}^{\mathrm{Ms}^{*}}=\mathrm{HB}(3-\right.$ mesitylpyrazolyl $)_{2}(5$-mesityl-pyrazolyl)] exhibit very high activity.

(I)

As part of an ongoing investigation of the properties of these catalysts (Lee \& Jordan, 2005), we have structurally characterized the title complex, $\mathrm{Tp}^{\mathrm{Ms}} \mathrm{TiCl}_{3}$, (I). The molecular structure of (I) is shown in Fig. 1, and selected bond distances and angles are presented in Table 1. The Ti atom is coordinated by three N atoms that are constrained to a facial arrangement by the $\mathrm{Tp}^{\mathrm{Ms}}$ ligand, and by three chloride ligands in a distorted octahedral geometry. The complex is located on a mirror plane. The core structure of (I) is typical for tris(pyrazolyl)borate titanium complexes. The $\mathrm{N}-\mathrm{Ti}-\mathrm{N}$ angles formed by the tridentate $\mathrm{Tp}^{\mathrm{Ms}}$ ligand are acute [range 83.25 (8)-83.40 (12) ${ }^{\circ}$, the $\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl}$ angles are correspondingly larger [range $94.78(5)-95.22(3)^{\circ}$], and the $\mathrm{Ti}-\mathrm{Cl}$ distances are normal [range 2.2417 (12)-2.2635 (9) Å]. Very similar values for these parameters were observed for $\mathrm{Tp}^{\mathrm{Ms}^{*}} \mathrm{TiCl}_{3}$ [(II); Michiue \& Jordan, 2003], $\mathrm{Tp}^{*} \mathrm{TiCl}_{3}[(\mathrm{III})$; $\left.\mathrm{Tp}^{*}=\mathrm{HB}\left(3,5-\mathrm{Me}_{2} \text {-pyrazolyl }\right)_{3}\right]$ (Antiñolo et al., 1999), $\mathrm{Tp}^{\mathrm{Np}} \mathrm{TiCl}_{3}\left[(\mathrm{IV}) ; \mathrm{Tp}^{\mathrm{Np}}=\mathrm{HB}(3 \text {-neopentyl-pyrazolyl) })_{3}\right]($ Gil \&

Received 1 August 2006
Accepted 16 August 2006

Figure 1
View of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. Symmetry-equivalent atoms are generated by the (010) mirror. The suffix A corresponds to the symmetry position $(x,-y, z)$. The solvent molecules have been omitted.

Casagrande, 2004), and $\mathrm{Tp}^{\text {Menth }}{ }^{*} \mathrm{TiCl}_{3}\left[(\mathrm{~V}) ; \mathrm{Tp}^{\text {Menth* }}=\right.$ hydro-tris[4,5,6,7-tetrahydro-4-methyl-7-(1-methylethyl)-2H-indazolato-N2]borate] (LeCloux et al., 1994). The Ti-N distances in (I) [range 2.206 (2)-2.253 (3) Å] are similar to those in the isomeric complex (II) [range 2.172 (3)2.239 (3) Å], which also contains bulky mesityl groups, but slightly longer than those in (III) [range 2.164 (2)2.177 (2) \AA], (IV) [range 2.162 (8)-2.167 (6) \AA], and (V) [range 2.131 (7)-2.186 (6) Å], which contain sterically smaller Tp^{\prime} ligands. In (I), the three mesityl rings lie roughly perpendicular to the pyrazolyl rings to which they are attached and together form a deep pocket that shields the three chloride ligands.

Experimental

The synthesis of (I) was carried out as described previously (Murtuza et al., 2002). Crystals of (I) were grown from a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 273 K .

Crystal data

$\left[\mathrm{Ti}\left(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{BN}_{6}\right) \mathrm{Cl}_{3}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$Z=2$
$M_{r}=891.65$	$D_{x}=1.377 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / m$	Mo $K \alpha$ radiation
$a=7.964(3) \AA$	$\mu=0.67 \mathrm{~mm}^{-1}$
$b=22.940(7) \AA$	$T=130(2) \mathrm{K}$
$c=11.844(4) \AA$	Rod, red
$\beta=96.484(5)^{\circ}$	$0.45 \times 0.15 \times 0.15 \mathrm{~mm}$
$V=2149.9(12) \AA^{\circ}$	

$M_{r}=891.65$
Monoclinic, $P 2_{1} / m$
$a=7.964$ (3) \AA 。
$b=22.940$ (7) \AA
$c=11.844$ (4) \AA
$\beta=96.484$ (5) ${ }^{\circ}$
$V=2149.9(12) \AA^{3}$

Data collection

Bruker SMART APEX CCD
\quad diffractometer
ω scans
Absorption correction: multi-scan
\quad (SADABS; Bruker, 2002)

16493 measured reflections 3894 independent reflections 3026 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0635 P)^{2}\right. \\
& \quad+0.8057 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.92 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.64 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.120$
$S=1.05$
3894 reflections
264 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

Ti1-N1	2.253 (3)	Ti1-Cl1	2.2635 (9)
Ti1-N3	2.206 (2)	Ti1-Cl2	2.2417 (12)
B1-N2	1.539 (6)	B1-N4	1.541 (4)
N2-N1-Ti1	118.3 (2)	$\mathrm{Cl} 2-\mathrm{Ti} 1-\mathrm{N} 1$	172.53 (9)
N4-N3-Ti1	119.33 (17)	N3 ${ }^{\text {i }}$-Ti1-Cl1	171.27 (6)
N3-Ti1-N1	83.25 (8)	$\mathrm{N}{ }^{\text {i }}-\mathrm{Ti} 1-\mathrm{Cl} 2$	91.19 (6)
N3 ${ }^{\text {i }}$-Ti1- ${ }^{\text {- }} 3$	83.40 (12)	$\mathrm{Cl} 1-\mathrm{Ti} 1-\mathrm{Cl} 1^{\text {i }}$	94.78 (5)
N3-Ti1-Cl1	90.53 (6)	Cl2-Ti1-Cl1	95.22 (3)
N1-Ti1-Cl1	89.83 (6)	N2-B1-N4	108.1 (2)
N3-Ti1-Cl2	91.19 (6)	N $4^{\text {i }}-\mathrm{B} 1-\mathrm{N} 4$	108.7 (3)

Symmetry code: (i) $x,-y+\frac{3}{2}, z$.
Atom H 22 attached to atom B 1 was refined freely $[\mathrm{B}-\mathrm{H}=$ 1.13 (4) \AA]. All other H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}$ $=0.95$ and $0.98 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINTPlus (Bruker, 2002); data reduction: SADABS (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: $\operatorname{SHELXTL}$; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the US Department of Energy (DE-FG02-00ER15036).

References

Antiñolo, A., Carrillo-Hermosilla, F., Corrochano, A. E., Fernández-Baeza, J., Lanfranchi, M., Otero, A. \& Pellinghelli, M. A. (1999). J. Organomet. Chem. 577, 174-180.
Bruker (2002). SMART (Version 5.628), SAINT-Plus (Version 6.02), $S A D A B S$ (Version 2.03) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Gil, M. P. \& Casagrande, O. L. Jr (2004). J. Organomet. Chem. 689, 286-292.
Gil, M. P., dos Santos, J. H. Z. \& Casagrande, O. L. Jr (2004). J. Mol. Catal. A, 209, 163-169.
LeCloux, D. D., Keyes, M. C., Osawa, M., Reynolds, V. \& Tolman, W. B. (1994). Inorg. Chem. 33, 6361-6368.
Lee, H. \& Jordan, R. F. (2005). J. Am. Chem. Soc. 127, 9384-9385.
Michiue, K. \& Jordan, R. F. (2003). Macromolecules, 36, 9707-9709.
Michiue, K. \& Jordan, R. F. (2004). Organometallics, 23, 460-470.
Murtuza, S., Casagrande, O. L. Jr \& Jordan, R. F. (2002). Organometallics, 21, 1882-1890.

[^0]: © 2006 International Union of Crystallography All rights reserved

